SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY: PUTTUR

(AUTONOMOUS)

Siddharth Nagar, Narayanavanam Road – 517583 <u>OUESTION BANK (DESCRIPTIVE)</u>

Subject with Code: Numerical Methods & Transform Techniques (23HS0834)

Year & Sem: II-B.Tech & I-Sem

Course & Branch: B.Tech – ME Regulation: R23

<u>UNIT –I</u>

SOLUTION OF ALGEBRAIC & TRANSCENDENTAL EQUATIONS

	a) Find the root of the equation $x^2 - 5 = 0$ by using Bisection method.	[L1][CO1]	[2M]
	b) Write the formula to find the root of an equation by Regula Falsi method.	[L1][CO1]	[2M]
1	c) Write the formula to find the root of an equation by Newton Raphson's method.	[L1][CO1]	[2M]
	d) Compare Jacoby and Gauss Seidel methods.	[L5][CO1]	[2M]
	e) Solve by Jacoby method [Only two iterations] x + y = 3; $3x - 2y = 4$.	[L3][CO1]	[2M]
2	a) Find a positive root of the equation $x^3 - x - 1 = 0$ by Bisection method.	[L1][CO1]	[5M]
	b) Find out the square root of 25 given $x_0 = 2.0$, $x_1 = 7.0$ using Bisection method.	[L1][CO1]	[5M]
3	a) Find a positive root of the equation $x^4 - x - 10 = 0$ by iteration method.	[L1][CO1]	[5M]
	b) Solve $x^3 - 2x - 5 = 0$ for a positive root by iteration method.	[L3][CO1]	[5M]
4	Find the root of the equation $x e^{x} = 2$ using Regula-falsi method.	[L1][CO1]	[10M]
5	Find the root of the equation $x^3 - x - 4 = 0$ using False position method.	[L1][CO1]	[10M]
6	Find a real root of the equation $xtanx+1=0$ using Newton – Raphson method.	[L1][CO1]	[10M]
7	Find a real root of the equation $e^x sinx = 1$ using Newton – Raphson method.	[L1][CO1]	[10M]
8	Solve the following system of equations by Jacobi method 27x + 6y - z = 85; $x + y + 54z = 110$; $6x + 15y + 2z = 72$.	[L3][CO1]	[10M]
9	Solve the following system of equations by Jacobi method 2x - 3y + 20z = 25; $20x + y - 2z = 17$; $3x + 20y - z = -18$.	[L3][CO1]	[10M]
10	Apply Gauss Siedel iteration method to solve equations 20x + y - 2z = 17; $3x + 20y - z = -18$; $2x - 3y + 20z = 25$.	[L3][CO1]	[10M]
11	Solve the following system of equations by Gauss-Siedel method $4x + 2y + z = 14$; $x + 5y - z = 10$; $x + y + 8z = 20$.	[L3][CO1]	[10M]

<u>UNIT –II</u>

INTERPOLATION

1a) Write Newton's forward interpolation formulae.[L1][CO2]b) Construct a forward difference table for the function $y = x^2$ for $x = 0, 1, 2, 3$.[L3][CO2]c) Write Lagrange's interpolation formulae.[L1][CO2]d) State the two normal equation used in fitting a straight line.[L1][CO2]e) Write the normal equations used in fitting a second degree polynomial.[L1][CO2]2a) Using Newton's forward interpolation formula and the given table of values[L3][CO2] $\frac{x \ 1 \ 1.4 \ 1.8 \ 2.2 \ f(x) \ 3.49 \ 4.82 \ 5.96 \ 6.5 \ 0$ [L3][CO2]Obtain the value of $f(x)$ when $x=1.6$.[L3][CO2]b) Applying Newton's forward interpolation formula, compute the value of $\sqrt{5.5}$ given that $\sqrt{5} = 2.236$; $\sqrt{6} = 2.449$; $\sqrt{7} = 2.646$; $\sqrt{8} = 2.828$.[L3][CO2]3From the following table values of x and $y=tan x$. Interpolate the values of y when $x=0.12$ and $x=0.28$.[L5][CO2]4a) Using Newton's forward interpolation formula and the given table of values[L3][CO2] $x \ 1.1 \ 1.3 \ 1.5 \ 1.7 \ 1.9 \ f(x) \ 0.21 \ 0.69 \ 1.25 \ 1.89 \ 2.61 \ 10000000000000000000000000000000000$	[2M] [2M] [2M] [2M] [2M] [5M] [5M]
c) Write Lagrange's interpolation formulae.[L1][C02]d) State the two normal equation used in fitting a straight line.[L1][C02]e) Write the normal equations used in fitting a second degree polynomial.[L1][C02]e) Write the normal equations used in fitting a second degree polynomial.[L1][C02]a) Using Newton's forward interpolation formula and the given table of values[L3][C02] x 11.41.82.2 $f(x)$ 3.494.825.966.5Obtain the value of $f(x)$ when $x=1.6$.[L3][C02]b) Applying Newton's forward interpolation formula, compute the value of $\sqrt{5.5}$ given that $\sqrt{5} = 2.236$; $\sqrt{6} = 2.449$; $\sqrt{7} = 2.646$; $\sqrt{8} = 2.828$.[L3][C02]3From the following table values of x and $y=tan x$. Interpolate the values of y when $x=0.12$ and $x=0.28$.[L5][C02] $\frac{x}{0.10}$ 0.150.200.250.30 y 0.10030.15110.20270.25530.30934a) Using Newton's forward interpolation formula and the given table of values[L3][C02]	[2M] [2M] [2M] [5M]
d) State the two normal equation used in fitting a straight line.[L1][CO2]e) Write the normal equations used in fitting a second degree polynomial.[L1][CO2]2a) Using Newton's forward interpolation formula and the given table of values[L3][CO2] x 1 1.4 1.8 2.2 $f(x)$ 3.49 4.82 5.96 6.5 Obtain the value of $f(x)$ when $x=1.6$.[L3][CO2]b) Applying Newton's forward interpolation formula, compute the value of $\sqrt{5.5}$ [L3][CO2]given that $\sqrt{5} = 2.236$; $\sqrt{6} = 2.449$; $\sqrt{7} = 2.646$; $\sqrt{8} = 2.828$.[L5][CO2]3From the following table values of x and $y=tan x$. Interpolate the values of y when $x=0.12$ and $x=0.28$.[L5][CO2] x 0.10 0.15 0.20 0.25 0.30 4a) Using Newton's forward interpolation formula and the given table of values[L3][CO2] x 1.1 1.3 1.5 1.7 1.9	[2M] [2M] [5M]
e) Write the normal equations used in fitting a second degree polynomial.[L1][CO2]2a) Using Newton's forward interpolation formula and the given table of values[L3][CO2] x 11.41.82.2 $f(x)$ 3.494.825.966.5Obtain the value of $f(x)$ when $x=1.6$.0btain the value of $f(x)$ when $x=1.6$.[L3][CO2]b) Applying Newton's forward interpolation formula, compute the value of $\sqrt{5.5}$ given that $\sqrt{5} = 2.236$; $\sqrt{6} = 2.449$; $\sqrt{7} = 2.646$; $\sqrt{8} = 2.828$.[L3][CO2]3From the following table values of x and $y=tan x$. Interpolate the values of y when $x=0.12$ and $x=0.28$.[L5][CO2] x 0.100.150.200.250.30 y 0.10030.15110.20270.25530.30934a) Using Newton's forward interpolation formula and the given table of values[L3][CO2]	[2M] [5M]
2a) Using Newton's forward interpolation formula and the given table of values[L3][CO2] x 11.41.82.2 $f(x)$ 3.494.825.966.5Obtain the value of $f(x)$ when $x=1.6$.b) Applying Newton's forward interpolation formula, compute the value of $\sqrt{5.5}$ [L3][CO2] $given that \sqrt{5} = 2.236$; $\sqrt{6} = 2.449$; $\sqrt{7} = 2.646$; $\sqrt{8} = 2.828$.[L3][CO2] x 0.100.150.200.250.30 $x=0.12$ and $x=0.28$. x 0.100.15110.20270.25530.30934a) Using Newton's forward interpolation formula and the given table of values[L3][CO2] x 1.11.31.51.71.9	[5M] [5M]
x 11.41.82.2 $f(x)$ 3.494.825.966.5Obtain the value of $f(x)$ when $x=1.6$.b) Applying Newton's forward interpolation formula, compute the value of $\sqrt{5.5}$ [L3][CO2] y y y z </th <th>[5M]</th>	[5M]
f(x) 3.49 4.82 5.96 6.5 Obtain the value of $f(x)$ when $x=1.6$. [L3][CO2] b) Applying Newton's forward interpolation formula, compute the value of $\sqrt{5.5}$ given that $\sqrt{5} = 2.236$; $\sqrt{6} = 2.449$; $\sqrt{7} = 2.646$; $\sqrt{8} = 2.828$. [L3][CO2] 3 From the following table values of x and $y=tan x$. Interpolate the values of y when $x=0.12$ and $x=0.28$. [L5][CO2] x 0.10 0.15 0.20 0.25 0.30 y 0.1003 0.1511 0.2027 0.2553 0.3093 4 a) Using Newton's forward interpolation formula and the given table of values [L3][CO2]	
Obtain the value of $f(x)$ when $x=1.6$.Obtain the value of $f(x)$ when $x=1.6$.b) Applying Newton's forward interpolation formula, compute the value of $\sqrt{5.5}$ given that $\sqrt{5} = 2.236$; $\sqrt{6} = 2.449$; $\sqrt{7} = 2.646$; $\sqrt{8} = 2.828$.[L3][CO2] 3 From the following table values of x and $y=tan x$. Interpolate the values of y when $x=0.12$ and $x=0.28$.[L5][CO2] x 0.100.150.200.250.30y0.10030.15110.20270.25530.3093 4 a) Using Newton's forward interpolation formula and the given table of values[L3][CO2] x 1.11.31.51.71.9	
b) Applying Newton's forward interpolation formula, compute the value of $\sqrt{5.5}$ given that $\sqrt{5} = 2.236$; $\sqrt{6} = 2.449$; $\sqrt{7} = 2.646$; $\sqrt{8} = 2.828$.[L3][CO2]3From the following table values of x and $y=tan x$. Interpolate the values of y when $x=0.12$ and $x=0.28$.[L5][CO2] $\frac{x}{y}$ 0.100.150.200.250.30y0.10030.15110.20270.25530.30934a) Using Newton's forward interpolation formula and the given table of values[L3][CO2]	
b) Applying Newton's forward interpolation formula, compute the value of $\sqrt{5.5}$ given that $\sqrt{5} = 2.236$; $\sqrt{6} = 2.449$; $\sqrt{7} = 2.646$; $\sqrt{8} = 2.828$. 3 From the following table values of x and $y=tan x$. Interpolate the values of y when x=0.12 and $x=0.28$. a 0.10 0.15 0.20 0.25 0.30 y 0.1003 0.1511 0.2027 0.2553 0.3093 4 a) Using Newton's forward interpolation formula and the given table of values a 1.1 1.3 1.5 1.7 1.9 b 1.5 1.7 1.9	
3From the following table values of x and $y=tan x$. Interpolate the values of y when $x=0.12$ and $x=0.28$.[L5][CO2] x 0.100.150.200.250.30y0.10030.15110.20270.25530.30934a) Using Newton's forward interpolation formula and the given table of values[L3][CO2] x 1.11.31.51.71.9	[10M]
x = 0.12 and $x = 0.28$. $x = 0.10$ 0.15 0.20 0.25 0.30 y 0.1003 0.1511 0.2027 0.2553 0.3093 4 a) Using Newton's forward interpolation formula and the given table of values $[L3][CO2]$	
x 0.10 0.15 0.20 0.25 0.30 y 0.1003 0.1511 0.2027 0.2553 0.3093 4 a) Using Newton's forward interpolation formula and the given table of values [L3][CO2] x 1.1 1.3 1.5 1.7 1.9	
y 0.1003 0.1511 0.2027 0.2553 0.3093 4 a) Using Newton's forward interpolation formula and the given table of values [L3][CO2] x 1.1 1.3 1.5 1.7 1.9	
4a) Using Newton's forward interpolation formula and the given table of values[L3][CO2] x 1.11.31.51.71.9	
x 1.1 1.3 1.5 1.7 1.9	
	[5M]
f(x) = 0.21 = 0.60 = 1.25 = 1.90 = 2.61	
Obtain the value of $f(x)$ when $x=1.4$.[L3][CO2]b) Use Newton's backward interpolation formula to find $f(32)$ given[L3][CO2]	[5M]
b) Use Newton's backward interpolation formula to find $f(32)$ given $f(25)=0.2707, f(30)=0.3027, f(35)=0.3386, f(40)=0.3794.$	
5 Using Lagrange's interpolation formula, find the value of y(10) from the following [L3][CO2]	[10M]
table:	
x 5 6 9 11	
y 12 13 14 16	
6 The values of a function $f(x)$ are given below for certain values of x. Find the [L1][CO2]	[10M]
values of f(2) using Lagrange's interpolation formula.	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	
y 5 6 50 105 7 By method of least squares fit a straight line to the following data ; [L3][CO2]	[10M]
7By method of least squares in a straight line to the following data ,[L5][$C02$]X12345	
y 14 27 40 55 68	1
y 14 27 40 55 60 8 Fit a straight line $y = ax + b$ for the following data [L3][CO2]	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	[10M]
Y 5 5 4 5 4 3 4 3 3	[10M]

Course Code: 23HS0834

Cours	se Code: 25H	50854								5
9	Fit a second	d degree p	olynomial	to the foll	owing data	a by metho	od of least	square	[L3][CO2]	[10M]
		Х	0	1	2	3	4			
		У	1	1.8	1.3	2.5	6.3]		
10	Obtain a se	cond degr	ee polyno	mial to the	data by m	ethod of le	east square	•	[L3][CO2]	[10M]
		Х	1	2	3	4	5]		
		Y	10	12	8	10	14]		
11	Find the cu	rve of bes	t fit of the	type $y = a$	e^{bx} to the f	following of	lata by me	thod of	[L1][CO2]	[10M]
	least square	es								
		X	1	5	7	9	12			
		Y	10	15	12	15	21]		
1	1								1	

R23

<u>UNIT –III</u>

SOLUTION OF INITIAL VALUE PROBLEMS TO ORDINARY DIFFERENTIAL EQUATIONS

		1	
1	a) Write Taylor's formula for $y(x_1)$ to solve $y' = f(x, y)$ with $y(x_0) = y_0$.	[L1][CO3]	[2M]
	b) State Euler formula to solve $y' = f(x, y)$, $y(x_0) = y_0 at x = x_0 + h$.	[L1][CO3]	[2M]
	c) Find $y^{(1)}(x)$, by Picard's method, given that $\frac{dy}{dx} = 1 + xy$; $y(0) = 1$.	[L1][CO3]	[2M]
	d) If $\frac{dy}{dx} = y - x$; $y(0) = 2$, $h = 0.2$ then Find the value of k_1 in R–K method of fourth order.	[L1][CO4]	[2M]
	e) Write the formula for Runge – Kutta method of fourth order.	[L1][CO4]	[2M]
2	Tabulate $y(0.1)$, $y(0.2)$ and $y(0.3)$ using Taylor's series method given that $y^1 = y^2 + x$ and $y(0) = 1$	[L3][CO3]	[10M]
3	Solve $y^1 = x + y$, given $y(1) = 0$ find $y(1.1)$ and $y(1.2)$ by Taylor's series method.	[L3][CO3]	[10M]
4	Find an approximate value of y for $x = 0.1$ by Picard's method, given that $\frac{dy}{dx} = x + y$, $y(1) = 1$.	[L1][CO3]	[10M]
5	Find the values of $y(0, 1)$ and $y(0, 2)$ by Picard's method given that $y^1 = y - x^2$, $y(0) = 1$.	[L1][CO3]	[10M]
6	Solve by Euler's method $\frac{dy}{dx} = \frac{2y}{x}$ given y(1)=2 and find y(2) and y(3).	[L3][CO4]	[10M]
7	Solve by Euler's method $y' = y^2 + x$; $y(0) = 1$.and find $y(0.1)$ and $y(0.2)$	[L3][CO4]	[10M]
8	Using modified Euler's method find $y(0.2)$ and $y(0.4)$, given $y^1 = y + e^x$, $y(0) = 0$	[L3][CO4]	[10M]
9	Using Runge – Kutta method of fourth order, compute $y(0.2)$ from $y^1 = xy$; y(0) = 1, taking $h = 0.2$	[L3][CO4]	[10M]
10	Using Runge – Kutta method of fourth order, solve $\frac{dy}{dx} = x^2 - y$, $y(0) = 1$. Find (0.1) and $y(0.2)$.	[L3][CO4]	[10M]

Course Code: 23HS0834

11	Using Runge – Kutta method of fourth order, find $y(0.1)$ and $y(0.2)$		
	given that $\frac{dy}{dx} = x + y$, $y(0) = 1$.	[L3][CO4]	

UNIT –IV LAPLACE TRANSFORMS

1	a) What is the Linear Property of Laplace Transform	[L1][CO5]	[2M]
	b) State First Shifting Theorem	[L1][CO5]	[2M]
	c) State Change of Scale Property	[L1][CO5]	[2M]
	d) Define Unit Step Function	[L1][CO5]	[2M]
	e) State Convolution Theorem	[L1][CO5]	[2M]
2	a) Find the Laplace transform of $f(t) = e^{3t} - 2e^{-2t} + sin2t + cos3t + sinh3t - 2cosh4t + 9$.	[L3][CO5]	[5M]
	b) Find the Laplace transform of $f(t) = cosh at sin bt$	[L3][CO5]	[5M]
3	a) Find the Laplace transform of $f(t) = \left(\sqrt{t} + \frac{1}{\sqrt{t}}\right)^3$.	[L3][CO5]	[5M]
	b) Find the Laplace transform of $e^{4t}sin2t cost$.	[L3][CO5]	[5M]
4	a) Find the Laplace transform of $f(t) = cost. cos2t. cos3t$	[L3][CO5]	[5M]
	b) Find <i>L</i> { <i>e</i> ^{-3t} <i>sinh</i> 3 <i>t</i> }	[L3][CO5]	[5M]
5	a) Find the Laplace transform of $t^2 e^{2t} \sin 3t$.	[L3][CO5]	[5M]
	b) Find the Laplace transform of $\int_0^t \frac{\sin t}{t} dt$	[L3][CO5]	[5M]
6	a) Find the Laplace transform of $\int_0^t e^{-t} \cos t dt$.	[L3][CO5]	[5M]
	b) Find the Laplace transform of $e^{-4t} \int_0^t \frac{\sin 3t}{t} dt$.	[L3][CO5]	[5M]
7	a) Show that $\int_0^\infty t^2 e^{-4t} . \sin 2t dt = \frac{11}{500}$, Using Laplace transform.	[L1][CO5]	[5M]
	b) Using Laplace transform, evaluate $\int_0^\infty \frac{\cos at - \cos bt}{t} dt$.	[L3][CO5]	[5M]
8	a) Find $L^{-1}\left\{\frac{3s-2}{s^2-4s+20}\right\}$ by using first shifting theorem.	[L3][CO5]	[5M]
	b) Find $L^{-1}{\text{cot}^{-1} s}$	[L3][CO5]	[5M]
9	a) Find $L^{-1}\left\{\frac{1}{(s^2+5^2)^2}\right\}$, using Convolution theorem.	[L3][CO5]	[5M]
	b) Find $L^{-1}\left\{\frac{s^2}{(s^2+4)(s^2+25)}\right\}$, using Convolution theorem.	[L3][CO5]	[5M]
10	a) Find the Inverse Laplace transform of $\frac{1}{s(s^2+a^2)}$	[L3][CO5]	[5M]
	b) Find $L^{-1}\left\{\frac{s-2}{s^2+5s+6}\right\}$	[L3][CO5]	[5M]
11	a) Using Convolution theorem, Find $L^{-1}\left\{\frac{s}{(s^2+a^2)^2}\right\}$	[L3][CO5]	[5M]

[10M]

b) Using Convolution theorem, Find $L^{-1}\left\{\frac{1}{(s+a)(s+b)}\right\}$

UNIT –V FOURIER TRANSFORMS

1	a) Write the conditions for Fourier Series Expansion	[L1][CO6]	[2M]
	b) Write the Euler's formula for Fourier Series	[L1][CO6]	[2M]
	c) State Fourier integral theorem	[L1][CO6]	[2M]
	d) State the shifting property of Fourier Transform	[L1][CO6]	[2M]
	e) Write the formula for Fourier cosine transform	[L1][CO6]	[2M]
2	Obtain the Fourier series expansion of $f(x) = x^2$ in $0 < x < 2\pi$	[L3][CO6]	[10M]
3	Expand $f(x) = x $ as a fourier series in the interval (-2,2).	[L3][CO6]	[10M]
4	If $f(x) = \sin x $, expand $f(x)$ as a Fourier series in the interval $(-\pi, \pi)$	[L3][CO6]	[10M]
5	Find the half range cosine series expansion of $f(x) = x(2 - x)$ in $0 \le x \le 2$.	[L1][CO6]	[10M]
6	Find the half range sine series for $f(x) = x(\pi - x)$ in the interval $0 \le x \le \pi$ and deduce that $\frac{1}{1^3} - \frac{1}{3^3} + \frac{1}{5^3} - \frac{1}{7^3} = \frac{\pi^3}{32}$.	[L1][CO6]	[10M]
7	Using Fourier integral theorem, Show that $e^{-ax} - e^{-bx} = \frac{2(b^2 - a^2)}{\pi} \int_0^\infty \frac{\sum \sin x dx}{(x^2 + a^2)(x^2 + b^2)}$, $a, b > 0$	[L3][CO6]	[10M]
8	Find the Fourier transform of $f(x) = \begin{cases} 0; & -\infty < x < \alpha \\ x, & \alpha < x < \beta \\ 0, & x > \beta \end{cases}$	[L1][CO6]	[10M]
9	Find the Finite Fourier sine transform of $f(x)=2x$, where $0 < x < 2\pi$	[L1][CO6]	[10M]
10	Find the Fourier sine and cosine transforms of $f(x)=e^{-ax}$, $a > 0$ and hence deduce the integrals (i) $\int_0^\infty \frac{p \sin px}{a^2+p^2} dp$ (ii) $\int_0^\infty \frac{\cos px}{a^2+p^2} dp$	[L1][CO6]	[10M]
11	a) Prove that $F_c\{ x f(x) \} = \frac{d}{dp} [F_s(p)]$	[L5][CO6]	[5M]
	b) Prove that $F_s\{x f(x)\} = -\frac{d}{dp}[F_c(p)]$	[L5][CO6]	[5M]

Prepared by: Dept. of Mathematics